Publicaciones

1 a 20 de 111
Morales P., Roscales J.L., Munoz-Arnanz J., Barbosa A., Jimenez B.
Chemosphere, vol. 286 (2022)
Article preview
© 2021 The AuthorsPersistent Organic Pollutants (POPs) are a global threat, but impacts of these chemicals upon remote areas such as Antarctica remain unclear. Penguins can be useful species to assess the occurrence of POPs in Antarctic food webs. This work's aim was the evaluation of polychlorodibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in eggs of two penguin species, chinstrap (Pygoscelis antarticus) and gentoo penguins (Pygoscelis papua), breeding in the South Shetland Islands. Results showed a common pattern in POP levels regardless of the species, characterized by a major abundance of PCBs (98 %), followed by PBDEs (1–2%) and PCDD/Fs (<1 %). Concentrations of POPs in chinstrap and gentoo penguin eggs were 482 and 3250 pg/g l.w., respectively. PCBs, PBDEs and PCDD/Fs were found at higher concentrations in chinstrap penguin eggs, being these differences significant for PBDEs. Interspecies differences in POP levels agree well with potential trophic position differences among species due to changes in prey composition and foraging areas. POP profiles were dominated by congeners with a low degree of halogenation. Our results therefore suggest similar sources of POPs in the food webs exploited by both species and in both cases attributable to the long-range transportation rather than to the presence of local sources of POPs. TEQs were found between 1.38 and 7.33 pg/g l.w. and followed the pattern non-ortho dl-PCBs > PCDFs > PCDDs > mono-ortho dl-PCBs. TEQ values were lower than the threshold level for harmful effects in birds of 210 pg/g WHO-TEQ/g l.w.
Baos R., Cabezas S., Gonzalez M.J., Jimenez B., Delibes M.
Science of the Total Environment, vol. 802 (2022)
Article preview
© 2021 The AuthorsAccidents at mines involving stored tailings have produced catastrophic environmental damage. In April 1998 the dam of the Aznalcóllar mine tailings pond in the surroundings of the Doñana National Park (southwestern Spain) broke, discharging into the Guadiamar River more than 6 million m3 of toxic mud and acidic water with high concentrations of heavy metals and arsenic. We used the Eurasian otter (Lutra lutra) as sentinel species to assess the potential impact of the toxic spill on the river ecosystems and their recovery with time by studying the spatial and temporal variation (1999-2003, 2006) of selected trace element (Cu, Zn, Cd, Pb and As) concentrations in feces. Throughout the sampling period, the highest heavy metal and As levels were found in the most spill-affected reaches of the Guadiamar River (i.e., the Middle and, to a lesser extent, the Lower reaches), pointing out the mining accident as the main origin of the contamination. Overall, levels of trace elements decreased with the time elapsed since the toxic spill, except for Cd (F1,352 = 0.29, P = 0.59). However, rebounds for some elements (Pb, As, and Cu) were also observed, especially in the Middle and Lower reaches of the river, which might be attributed to the residual contamination in abiotic compartments and/or new inputs from industrial and agricultural activities in the nearby areas. Concentrations were relatively high when compared to those reported for both our reference area (Guadalete River) and other metal-polluted zones. We found that the estimated amounts of Pb and As ingested during the first years after the spill in the Guadiamar Middle reach would be high enough to cause reproductive issues. This could affect the local population recovery, although evidence on distribution range and numbers suggests otherwise, with thriving populations at regional scale. Our results support the role of otters as sentinel species for biomonitoring contaminants and thus to evaluate fluvial ecosystem health.
Roscales J.L., Suarez de Puga B.R., Vicente A., Munoz-Arnanz J., Sanchez A.I., Ros M., Jimenez B.
Chemosphere, vol. 286 (2022)
Article preview
© 2021 The AuthorsThe aim of the present study was to assess the presence of perfluoroalkyl acids (PFAAs), namely perfluoroalkane sulfonates and perfluoroalkyl carboxylic acids, in Spanish river basins in order to: identify potential spatiotemporal variations; evaluate the effectiveness of the measures implemented for the reduction/elimination of these pollutants; verify the fulfillment of the Environmental Quality Standards (EQSs) in the European Union. PFOS and PFOA were determined in 116 water samples from four sites in the Duero basin, the largest in the Iberian Peninsula, collected seasonally from 2013 to 2020. In addition, 30 fish sample composites from the sample banks of Duero, Tagus, Ebro, Eastern Cantabrian and Catalonian basins were analyzed for 15 PFAAs. Median PFOS and PFOA concentrations were 0.72 and 0.42 ng/L, ranging from values below the limit of quantification (LOQ) to 81 and 22 ng/L, respectively. During the studied period, 51% of water samples were above the EQS of 0.65 ng/L for PFOS. In the case of fish, the PFOS range was
Castro-Jiménez J, Bǎnaru D, Chen C.-T, Jiménez B., Muñoz-Arnanz J, Deviller G, Sempéré R.
Environmental Science and Technology, vol. 55, nº 14, pags. 9557 - 9568 (2021)
Article preview
The storage capacity, trophic magnification and risk of sixty-two POPs have been evaluated in a well-characterized pelagic food web (including phytoplankton, zooplankton, six fish, and two cephalopods species) from an impacted area in NW Mediterranean Sea. Our results show the high capacity of the planktonic compartment for the storage of polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), consistent with their estimated low trophic magnification factors (TMF) of 0.2-2.0 (PBDEs) and of 0.3-1.1 (PCDD/Fs). ∑PBDEs dominated in the zooplankton size-class 200-1000 μm (∼330 ng g-1 lw, median), whereas ∑PCDD/Fs accumulated preferentially in phytoplankton size-class 0.7-200 μm (875 pg g-1 lw, median). In contrast, polychlorinated biphenyls (PCBs) were preferentially bioaccumulated in the higher trophic levels (six fish species and two cephalopods) with TMFs = 0.8-3.9, reaching median concentrations of 4270 and 3140 ng g-1 lw (∑PCBs) in Atlantic bonito (Sarda sarda) and chub mackerel (Scomber colias), respectively. For these edible species, the estimated weekly intakes of dioxin-like POPs for humans based on national consumption standards overpassed the EU tolerable weekly intake. Moreover, the concentrations of nondioxin-like PCBs in S. sarda were above the EU maximum levels in foodstuffs, pointing to a risk. No risk evidence was found due to consumption of all other edible species studied, neither for PBDEs. The integrated burden of POPs in the food web reached ∼18 μg g-1 lw, representing a dynamic stock of toxic organic chemicals in the study area. We show that the characterized food web could be a useful and comprehensive bioindicatorof the chemical pollution status of the study area, opening new perspectives for the monitoring of toxic chemicals in Mediterranean coastal waters. © 2021 American Chemical Society.
Corsolini S, Metzdorff A, Baroni D, Roscales J.L, Jiménez B., Cerro-Gálvez E, Dachs J., Galbán-Malagón C, Audy O, Kohoutek J, Přibylova P, Poblete-Morales M, Avendaño-Herrera R, Bergami E, Pozo K.
Environmental Research, vol. 196 (2021)
Article preview
The air humidity in Antarctica is very low and this peculiar weather parameter make the use of flame retardants in research facilities highly needed for safety reasons, as fires are a major risk. Legacy and novel flame retardants (nFRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), Dechlorane Plus (DP), and other nFRs were measured in indoor dust samples collected at research Stations in Antarctica: Gabriel de Castilla, Spain (GCS), Julio Escudero, Chile (JES), and onboard the RRS James Clark Ross, United Kingdom (RRS JCR). The GC-HRMS and LC-MS-MS analyses of dust samples revealed ∑7PBDEs of 41.5 ± 43.8 ng/g in rooms at GCS, 18.7 ± 11.6 ng/g at JES, and 27.2 ± 37.9 ng/g onboard the RRS JCR. PBDE pattern was different between the sites and most abundant congeners were BDE-183 (40\%) at GCS, BDE-99 (50\%) at JES, and BDE-153 (37\%) onboard the RRS JCR. The ∑(4)HBCDs were 257 ± 407 ng/g, 14.9 ± 14.5 ng/g, and 761 ± 1043 ng/g in indoor dust collected in rooms at GCS, JES, and RRS JCR, respectively. The ∑9nFRs were 224 ± 178 ng/g at GCS, 14.1 ± 13.8 ng/g at JES, and 194 ± 392 ng/g on the RRS JCR. Syn- and anti-DP were detected in most of the samples and both isomers showed the highest concentrations at GCS: 163 ± 93.6 and 48.5 ± 61.1 ng/g, respectively. The laboratory and living room showed the highest concentration of HBCDs, DPs, BTBPE. The wide variations in FR levels in dust from the three research facilities and between differently used rooms reflect the different origin of furnishing, building materials and equipment. The potential health risk associated to a daily exposure via dust ingestion was assessed for selected FRs: BDEs 47, 99, and 153, α-, β-, and γ-HBCD, BTBPE, syn- and anti-DP. Although the estimated exposures are below the available reference doses, caution is needed given the expected increasing use of novel chemicals without a comprehensive toxicological profile. © 2020 Elsevier Inc.
Casas G, Martínez-Varela A, Vila-Costa M, Jiménez B., Dachs J.
Environmental Science and Technology (2021)
Article preview
Scavenging of gas- and aerosol-phase organic pollutants by rain is an efficient wet deposition mechanism of organic pollutants. However, whereas snow has been identified as a key amplification mechanism of fugacities in cold environments, rain has received less attention in terms of amplification of organic pollutants. In this work, we provide new measurements of concentrations of perfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in rain from Antarctica, showing high scavenging ratios. Furthermore, a meta-analysis of previously published concentrations in air and rain was performed, with 46 works covering different climatic regions and a wide range of chemical classes, including PFAS, OPEs, PAHs, polychlorinated biphenyls and organochlorine compounds, polybromodiphenyl ethers, and dioxins. The rain-aerosol (KRP) and rain-gas (KRG) partition constants averaged 105.5 and 104.1, respectively, but showed large variability. The high field-derived values of KRG are consistent with adsorption onto the raindrops as a scavenging mechanism, in addition to gas-water absorption. The amplification of fugacities by rain deposition was up to 3 orders of magnitude for all chemical classes and was comparable to that due to snow. The amplification of concentrations and fugacities by rain underscores its relevance, explaining the occurrence of organic pollutants in environments across different climatic regions. ©
Trilla-Prieto N, Vila-Costa M, Casas G, Jiménez B., Dachs J.
Environmental Science and Technology Letters (2021)
Article preview
Dissolved black carbon (DBC) plays a role in the oceanic carbon cycle. DBC originates from the heating and incomplete combustion of organic matter, including fossil fuels, a shared origin with polycyclic aromatic hydrocarbons (PAH). DBC is quantified using the benzene polycarboxylic acids produced by oxidation of the organic extract, a fraction of which derive from PAHs and other semivolatile aromatic-like compounds (SALCs). However, the current view of the DBC cycle does not take into account the inputs and sinks known for PAHs, such as diffusive air-water exchange and degradation. A meta-analysis of oceanic PAHs, SALCs, and DBC concentrations shows that SALCs account for 16\% of DBC (ranging from 5\% to 31\%). Such a large contribution of semivolatile aromatic hydrocarbons to DBC is consistent with the large atmospheric input of SALCs (estimated as 400 Tg C y-1). Furthermore, photodegradation at the surface ocean and microbial degradation in the water column of semivolatile DBC can be important sinks, consistent with the ubiquitous occurrence of the degradation genes of the metabolic routes for aromatic hydrocarbons. Future work should focus on the characterization of semivolatile DBC and its degradation in order to constrain its contribution to refractory organic matter and the anthropogenic perturbation of the carbon cycle. © 2021 The Authors. Published by American Chemical Society.
Melymuk L, Nizzetto P.B, Harner T, White K.B, Wang X, Tominaga M, He J, Li J, Ma J, Ma W.-L, Aristizábal B.H, Dryer A, Jiménez B., Muñoz-Arnanz J, Odabasi M, Dumanoglu Y, Yaman B, Graf C, Sweetman A, Klánová J.
Environmental Science and Policy, vol. 125, pags. 1 - 9 (2021)
Article preview
Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the variability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015–2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 \% differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance. © 2021
Rajan S, Rex K.R, Pasupuleti M, Muñoz-Arnanz J, Jiménez B., Chakraborty P.
Waste Management, vol. 131, pags. 331 - 340 (2021)
Article preview
Several studies have reported the release of halogenated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) associated with open burning of municipal solid waste. Considering soil as a sink for such organic contaminants, we conducted an in-depth study on the surface soil concentrations of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and sixteen USEPA enlisted PAHs collected from thirteen zones of the two major municipal dumpsites, Kodungaiyur dumpsite (KDS) and Perungudi dumpsite (PDS) of Chennai city. Indigenous microbes from dumpsite soil samples were isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. Using indigenous microbes, we have elucidated the bioavailability of the targeted organic pollutants for each site. Range of Σ17PCDD/Fs, Σ25PCBs and ∑16PAHs varied between 3.96–612 pg/g (96.0 pg/g; median), ND-182 ng/g (6.35 ng/g; median) and 0.62–3649 ng/g (64.3 ng/g; median), respectively. All the dumpsite samples showed bioavailability for POPs and PAHs. Toxicity equivalent values (TEQs) associated with dioxin-like PCBs and PCDD/Fs from the zones where dumped municipal solid wastes were collected from electronic-waste/IT-corridor/port areas and toxic PAHs from the zone receiving wastes from the industrial corridor of the city were higher than the soil permissible limit prescribed by the World Health Organization. © 2021 Elsevier Ltd
Saini A, Harner T, Chinnadhurai S, Schuster J.K, Yates A, Sweetman A, Aristizabal-Zuluaga B.H, Jiménez B., Manzano C.A, Gaga E.O, Stevenson G, Falandysz J, Ma J, Miglioranza K.S.B, Kannan K, Tominaga M, Jariyasopit N, Rojas N.Y, Amador-Muñoz O, Sinha R, Alani R, Suresh R, Nishino T, Shoeib T.
Environmental Pollution, vol. 267 (2020)
Article preview
A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of better understanding and comparing ambient air levels of persistent organic pollutants and other chemicals of emerging concern, to which humans residing in large cities are exposed. The first results from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs) including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ∼3.5 to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of OPEs of 15,100 and 14,100 pg/m3, respectively. Atmospheric concentrations of OPEs significantly dominated the FR profile at all sites, with total concentrations in air that were 2–5 orders of magnitude higher compared to other targeted chemical classes. A moderately strong and significant correlation (r = 0.625, p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although large differences in FR levels were observed between some cities, when averaged across the five United Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five. Results for Toronto, which is a ‘reference city’ for this study, agreed well with a more in-depth investigation of the level of FRs over different seasons and across eight sites representing different urban source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating global exposome. © 2020 The Author(s)A global study across 20 megacities/major cities reporting urban air concentrations of flame retardants and plasticizers. © 2020 The Author(s)
Bartalini A, Muñoz-Arnanz J, Baini M, Panti C, Galli M, Giani D, Fossi M.C, Jiménez B.
Science of the Total Environment, vol. 737 (2020)
Article preview
Legal restrictions and bans have led to a steady decrease in PCB environmental concentrations. Yet, in recent years PCBs have been found at very high levels in the Mediterranean Sea, for instance, in some apex predators. This work aimed to investigate current PCB (eighteen congeners: #28,52,77,81,101,105,114,118,123,126,138,153,156,157,167,169,180,189) concentrations in the Mediterranean Sea and their relevance today, focusing on their occurrence in edible fish species typically consumed in the Mediterranean diet. In spring 2017, a total of 48 fish samples from the Northern Thyrrenian Sea were collected: 16 specimens of sardine (Sardina pilchardus), 16 of anchovy (Engraulis encrasicolus) and 16 of bogue (Boops boops). PCBs were quantified in the muscle of the animals by means of GC-QqQ-MS. They were found in all samples at the greatest concentrations (ng/g w.w.) in sardine (4.15–17.9, range), and very similar values between anchovy (1.01–7.08) and bogue (1.46–7.22). WHO-TEQ PCB values followed the same order, i.e. sardine (0.410–1.24, range in pg/g w.w.) > anchovy (0.0778–0.396) ~ bogue (0.0726–0.268). These concentrations lied below the European limits of 75 ng/g (w.w.) for the six indicator PCBs and 6.5 pg/g WHO-TEQ for dioxins and dioxin-like PCBs in muscle meat of fish. Additionally, estimated weekly intakes (EWI, in pg WHO-TEQ/Kg/week) for sardine (1.2), anchovy (0.29) and bogue (0.35) scored below the safe value proposed by EFSA of 2 pg WHO-TEQ/Kg/week. When comparing with data reported for the same species in previous Mediterranean studies, values found here were lower than those surveyed in the late 90s and early 2000s; however, they were often not notably different from concentrations reported in last years. This builds up on the concept of a current slow decrease of PCBs in the Mediterranean Sea, likely linked to new inputs and/or remobilization of burdens, and reinforces the need of continous monitoring of these legacy contaminants still ubiquitous today. © 2020 Elsevier B.V.
Casas G, Martínez-Varela A, Roscales J.L, Vila-Costa M, Dachs J., Jiménez B.
Environmental Pollution, vol. 267 (2020)
Article preview
The accumulation of Perfluoroalkyl substances (PFAS) in the SML and their enrichment in SSA is consistent with marine aerosols as a vector for PFAS transport. © 2020 Elsevier LtdSea-spray (or sea-salt) aerosol (SSA) formation and their subsequent atmospheric transport and deposition have been suggested to play a prominent role in the occurrence of ionizable perfluoroalkyl substances (PFAS) in the maritime Antarctica and other remote regions. However, field studies on SSA's role as vector of transport of PFAS are lacking. Following a multiphase approach, seawater (SW), the sea-surface microlayer (SML) and SSA were sampled simultaneously at South Bay (Livingston Island, Antarctica). Average PFAS concentrations were 313 pg L−1, 447 pg L−1, and 0.67 pg m−3 in SW, the SML and SSA, respectively. The enrichment factors of PFAS in the SML and SSA ranged between 1.2 and 5, and between 522 and 4690, respectively. This amplification of concentrations in the SML is consistent with the surfactant properties of PFAS, while the large enrichment of PFAS in atmospheric SSA may be facilitated by the large surface area of SSA and the sorption of PFAS to aerosol organic matter. This is the first field work assessing the simultaneous occurrence of PFAS in SW, the SML and SSA. The large measured amplification of concentrations in marine aerosols supports the role of SSA as a relevant vector for long-range atmospheric transport of PFAS. © 2020 Elsevier Ltd
Mukhopadhyay M, Sampath S, Muñoz-Arnanz J, Jiménez B., Chakraborty P.
Environmental Geochemistry and Health (2020)
Article preview
Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70\% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco). © 2020, Springer Nature B.V.
Capanni F, Muñoz-Arnanz J, Marsili L, Fossi M.C, Jiménez B.
Marine Pollution Bulletin, vol. 156 (2020)
Article preview
Bio-accumulation of high levels of persistent organic pollutants represent a serious conservation concern for Mediterranean marine odontocetes. In this study, blubber samples from 10 striped dolphins (Stenella coeruleoalba) stranded along the Italian coasts during 2015–2016 were analyzed. All specimens showed dl-PCBs > PBDEs ≫ PCDD/Fs. Median concentrations were 1820 ng/g l.w., 456 ng/g l.w. and 23.9 pg/g l.w., respectively. dl-PCBs accounted for 93.3\% of total TEQs. PBDE concentrations suggest that the Mediterranean basin may be considered a hotspot for organobromine compounds. OCDD did not represent the greatest contributor to PCDD/Fs profile, most likely due to a change in dioxin environmental sources in the last two-three decades. Despite international regulations, the present study emphasized that POP exposure levels in Mediterranean striped dolphins have not declined significantly in recent years. Toxicological and risk assessment studies on this sentinel species may provide an early indication of potential adverse health effects on Mediterranean ecosystems. © 2020 Elsevier Ltd
Cerro-Gálvez E, Roscales J.L, Jiménez B., Sala M.M, Dachs J., Vila-Costa M
Water Research, vol. 171 (2020)
Article preview
Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) acids are ubiquitous in the oceans, including remote regions, and are toxic to fish and mammals. The impact to the lowest trophic levels of the food web, however, remains unknown. We challenged natural bacterial communities inhabiting Antarctic coastal waters (Deception Island) with PFOS and PFOA concentrations ranging from 2 ng/L to 600 ng/L that selected for tolerant taxa. After 48 h, concentrations of PFOS decreased by more than 50\% and sulfur metabolism-related transcripts were significantly enriched in the treatments suggesting desulfurization of PFOS. Conversely, no significant differences were found between initial and final PFOA concentrations. Gammaproteobacteria and Roseobacter, two abundant groups of marine bacteria, increased their relative activity after 24 h of incubation, whereas Flavobacteriia became the main contributor in the treatments after 6 days. Community activities (extracellular enzyme activity and absolute number of transcripts) were higher in the treatments than in the controls, while bacterial abundances were lower in the treatments, suggesting a selection of PFOS and PFOA tolerant community in the exposed treatments. Our results show a direct effect of PFOS and PFOA exposure on the composition and functionality of natural Antarctic marine microbial communities. While no evidence of defluorination of PFOS or PFOA was detected, probable desulfurization of PFOS depicts a direct link with the sulfur biogeochemistry of the ocean. © 2020 Elsevier Ltd
Baini M, Panti C, Fossi M.C, Tepsich P, Jiménez B., Coomber F, Bartalini A, Muñoz-Arnanz J, Moulins A, Rosso M.
Scientific Reports, vol. 10, nº 1 (2020)
Article preview
The Cuvier's beaked whale (Ziphius cavirostris) is one of the least known cetacean species worldwide. The decreasing population trend and associated threats has led to the IUCN categorising the Mediterranean subpopulation as Vulnerable on the Red List of Threatened Species. This study aimed to investigate for the first time the ecotoxicological status of Cuvier's beaked whale in the NW Mediterranean Sea. The study sampled around the 20\% of the individuals belonging to the Ligurian subpopulation, collecting skin biopsies from free-ranging specimens. The levels of polychlorinated biphenyl (PCBs), polybrominated diphenyl ethers (PBDEs) and induction of cytochrome's P450 (CYP1A1 and CYP2B isoforms) were evaluated. Results highlighted that the pattern of concentration for the target contaminants was PCBs > PBDEs and the accumulation values were linked to age and sex, with adult males showing significantly higher levels than juvenile. Concerns raised by the fact that 80\% of the individuals had PCB levels above the toxicity threshold for negative physiological effects in marine mammals. Therefore, these findings shed light on this silent and serious threat never assessed in the Mediterranean Cuvier’s beaked whale population, indicating that anthropogenic pressures, including chemical pollution, may represent menaces for the conservation of this species in the Mediterranean Sea. © 2020, The Author(s).
Roscales J.L, Vicente A, Ryan P.G, González-Solís J., Jiménez B.
Environmental Science and Technology, vol. 53, nº 16, pags. 9855 - 9865 (2019)
Article preview
In this study, we evaluate the main factors driving the exposure of Southern Ocean seabirds to perfluoroalkyl substances (PFASs) across a wide geographic range. Five perfluoroalkane sulfonates (PFSAs, C4-12), 10 perfluoroalkyl carboxylic acids (PFCAs, C4-13), and perfluorooctane sulfonamide (FOSA) were analyzed in plasma (n = 128) from eight species, including penguins, giant petrels, skuas, albatrosses, and shearwaters, breeding at four sites in the Antarctic, sub-Antarctic, and adjacent cool-temperate regions. Mean σPFAS concentrations ranged from 0.53 to 53 ng/g wet weight from black-browed albatross to giant petrels, respectively. As expected due to biomagnification, greater concentrations of most PFASs were found in species near the top of marine food webs such as giant petrels. However, our results suggest that other factors, i.e., metabolic capabilities and spatial movements, can mask interspecies differences in PFASs, especially PFCAs, expected from trophic structure. For instance, trans-equatorial migratory seabirds exhibited PFAS levels and profiles that are consistent with northern hemisphere exposure, reflecting their potential biovector role in the global transport of these pollutants. Among resident species, greater concentrations of PFASs, especially long-chain PFCAs, were found in seabirds breeding or foraging north of the Antarctic Circumpolar Current (ACC) than in those restricted to Antarctic/sub-Antarctic distributions. Moreover, composition profiles of PFAS in Antarctic seabirds agree well with those expected from long-range transport. Our results confirm the importance of the ACC in protecting Antarctic food webs from water-phase-transported PFASs. © 2019 American Chemical Society.
Casal P, Casas G, Vila-Costa M, Cabrerizo A, Pizarro M, Jiménez B., Dachs J.
Environmental Science and Technology, vol. 53, nº 15, pags. 8872 - 8882 (2019)
Article preview
Many legacy and emerging persistent organic pollutants (POPs) have been reported in polar regions, and act as sentinels of global pollution. Maritime Antarctica is recipient of abundant snow precipitation. Snow scavenges air pollutants, and after snow melting, it can induce an unquantified and poorly understood amplification of concentrations of POPs. Air, snow, the fugacity in soils and snow, seawater and plankton were sampled concurrently from late spring to late summer at Livingston Island (Antarctica). Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations in snow and air were close to equilibrium. POPs in soils showed concentrations close to soil-air equilibrium or net volatilization depending on chemical volatility. Seawater-air fugacity ratios were highly correlated with the product of the snow-air partition coefficient and the Henry's law constant (KSA H'), a measure of snow amplification of fugacity. Therefore, coastal seawater mirrored the PCB congener profile and increased concentrations in snowmelt due to snowpack releasing POPs to seawater. The influence of snowpack and glacier inputs was further evidenced by the correlation between net volatilization fluxes of PCBs and seawater salinity. A meta-analysis of KSA, estimated as the ratio of POP concentrations in snow and air from previously reported simultaneous field measurements, showed that snow amplification is relevant for diverse families of POPs, independent of their volatility. We claim that the potential impact of atmospheric pollution on aquatic ecosystems has been under-predicted by only considering air-water partitioning, as snow amplification influences, and may even control, the POP occurrence in cold environments. © 2019 American Chemical Society.
González-Gaya B, Casal P, Jurado E, Dachs J., Jiménez B.
Environmental Science: Processes and Impacts, vol. 21, nº 11, pags. 1957 - 1969 (2019)
Article preview
The ubiquitous occurrence of perfluoroalkyl substances (PFAS) in the open ocean has been previously documented, but their vertical transport and oceanic sinks have not been comprehensively characterized and quantified at the oceanic scale. During the Malaspina 2010 circumnavigation expedition, 21 PFAS were measured at the surface and at the deep chlorophyll maximum (DCM) in the Atlantic, Indian and Pacific oceans. In this work, we report an extended data set of PFAS dissolved phase concentrations at the DCM. ∑PFAS at the DCM varied from 130 to 11000 pg L-1, with a global average value of 500 pg L-1. Perfluorooctanesulfonate (PFOS) abundance contributed 39\% of ∑PFAS, followed by perfluorodecanoate (PFDA, 17\%), and perfluorohexanoate (PFHxA, 12\%). The relative contribution of the remaining compounds was below 10\%, with perfluorooctanoate (PFOA) contributing only 5\% to PFAS measured at the DCM. Estimates of vertical diffusivity, derived from microstructure turbulence observations in the upper (<300 m) water column, allowed the derivation of PFAS eddy diffusive fluxes from concurrent field measurements of eddy diffusivity and PFAS concentrations. The PFAS concentrations at the DCM predicted from an eddy diffusivity model were lower than field-measured concentrations, suggesting a relevant role of other vertical transport mechanisms. Settling fluxes of organic matter bound PFAS (biological pump), oceanic circulation and potential, yet un-reported, biological transformations are discussed. © 2019 The Royal Society of Chemistry.